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Abstract
In inventory, the utility of the deteriorating items decreases with time. The degree of

deterioration of product utility can be treated as penalty cost in the inventory replenishment
system. In this paper, we present EOQ model for those perishable products, which do not
deteriorate for some period of time and after that time they continuously deteriorate with time and
loose their importance. This loss can be incurred as penalty cost to the wholesaler / retailer. The
prime focus of our paper is to develop the EOQ model for time-deteriorating items using penalty
cost with finite and infinite production rate. For simplicity, linear and exponential penalty cost
functions have been considered as a measurement of the utility of the product. The theoretical
expressions are obtained for optimum inventory level and cycle time. All the theoretical
developments are numerically justified.
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1.  Introduction
 Considerable amount of research work has been devoted on decaying
inventory system. In inventory, each item has either fixed lifetime or random lifetime.
Fixed lifetime products have deterministic shelf life i.e. if a product remains unused up
to its lifetime, it is considered to be out-dated and must be disposed off. These products
are usually depleted following either First In First Out (FIFO) or Last In First Out
(LIFO) issuing policy. Random lifetime products have not exact life. A typical example
is fresh products whose time of spoilage is assumed to be a random variable.

 Inventory models for fixed lifetime perishable products have been studied by
Nandakumar and Morton [5] and Liu and Lina [4]. Perry [6] considered a perishable
inventory system where the commodity’s arrival and customer demand processes are
stochastic and the stored items have a constant lifetime.

 A stochastic dynamic programming model was developed by Jain and Silver
[2] to determine the optimal ordering policy for a random lifetime perishable or
potentially obsolete product. Liu and Chaung [3] developed a single item continuous
review inventory models with Poisson demands, exponentially distributed lifetime and
replenishment lead-times including all the possibilities of partial backlogging, complete
backlogging and complete lost sales.

 In both fixed and random lifetime perishability, the utility of an individual
product or undecayed products is constant. But this is the fact that the utility of the
product does not seem reasonably constant, since the selling price of many perishable
products like fresh vegetables, fruits, milk products, bakery items etc. decreases with
time. This loss is termed as a penalty cost to the wholesaler / retailer.



 Journal of Reliability and Statistical Studies, December 2009, Vol. 2(2)68

 Fujiwara and Perera [1] have proposed an EOQ model for continuously
deteriorating items using linear and exponential penalty costs. They have assumed that
the utility of the perishable product concerned deteriorates continuously from the
beginning of the replenishment cycle. The penalty cost at age zero is set to zero as no
utility deterioration has occurred and penalty cost rises over time until it reaches the
level of the original utility of the product, which can then be considered to have reached
its lifetime.

 But usually, in practice, most of the perishable products do not deteriorate for
some period of time and after that time deteriorate continuously with time until the
utility of the product reaches zero.

 Products like fresh vegetables, fruits, dairy products, bakery items etc. do not
deteriorate at the beginning of the period but they continuously deteriorate after some
time. As a result of this, the selling price of such products decreases which can
considered as a penalty cost for the wholesaler/retailer.

 Taking into account this consideration, in the present paper, we have
developed an EOQ model for infinite and finite production rate for time deteriorating
items i.e. for those perishable products that do not deteriorate for some period of time
and after that period they continuously deteriorate with time and become useless till
they reach their lifetime. This loss can be incurred upon as a penalty cost to the
wholesaler/ retailer and thus it has been incorporated in this proposed model.

 In this context, we have considered two types of penalty cost function of age
(i)  Linear
(ii)  Exponential penalty cost functions, as a measurement of utility of the product.
A linear penalty cost function
  P(t) = π (t - µ ),   t ≥  µ
             = 0;    otherwise

which gives the cost of keeping one unit of product in stock until age t, where µ be that
time period at which deterioration of product start and π  is constant. There will be no
penalty cost incurred upon the products up to time period (0, µ).

An exponential penalty cost function is taken as

 P(t) = ( )( )te 1β −µ −α ,   t ≥  µ

        = 0;   otherwise

which also gives the cost of keeping one unit of product in stock until age t, where  µ be
that time period at which deterioration of product start and α and β are constants.

 EOQ model for infinite production rate has been developed in section (3)
while for finite production rate is formulated in section (4). The sensitivity analysis has
also been done in order to judge the effectiveness of the suggested models.
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2.  Notations And Assumptions
 The proposed inventory model is developed under the following assumptions
and notations.

2.1  Notations

Q =   Number of items received at the beginning of the period.
D =   Demand rate.
H =   Inventory holding cost per unit per unit time.
A =   Set-up cost per cycle.
µ =   The time period at which deterioration of products start.
C(T) =   Average total variable cost per unit time.
T =   Length of replenishment cycle, which will not exceed product lifetime.
T* =   Optimum value of T.
Q* =   Optimum value of Q.

2.2  Assumptions
1. A single product is considered over a prescribed period of T unit of time.
2. The replenishment occurs instantaneously at an infinite rate.
3. The demand rate is constant say D units per unit of time.
4. No back order is permitted.
5. Delivery lead-time is zero.
6. The holding cost, ordering cost remains constant over time.

3.  EOQ Model For Infinite Production Rate

3.1 Formulation and Solution
 According to the assumptions and notations mentioned above, the, behavior of
inventory system in one cycle may be depicted as in figure (1).

            Inventory level

D dt
Q

Time
                       0 µ                          t     t + dt                    T

Fig.(1)

 Let Q be the number of items received or the inventory level at the beginning
of the period. From the figure (1), it is clear that inventory level decreases due to the
constant demand say D units per unit of time. Up to the time interval (0, µ), there is no
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deterioration of the product but after time t = µ, the product continuously deteriorates so
the penalty cost can be incurred upon for the time interval (µ, T).

 The total variable cost per cycle time consists of the inventory holding cost, set
up cost and penalty cost. Since the demand rate is D units per unit time,

∴ The total demand in one cycle of time-interval T is = DT
∴ The number of items received at the beginning of the period is Q = DT        (1)

 Let the age of the product delivered at time t is t. For the time interval (0, µ),
no perishability occurs only demand is delivered during this period at the rate of D units
per unit time. But for the time- interval (µ, T), deterioration of the product starts. As a
result, penalty cost has been imposed.

Case I:  When linear penalty cost function is used
 A linear penalty cost function P(t) = π (t - µ ), t ≥ µ which gives the cost of
keeping one unit of product in stock until age t, where µ be that time period at which
deterioration of product start and π  is constant.

 The cost due to the deterioration of the product delivered during the period
(t, t + dt) is given by π (t - µ) D dt. Thus penalty cost due to the deterioration of the
products delivered during the time interval (µ, T) is given by

( )
T 2 2T

D t dt D T
2 2µ

µ
π −µ = π −µ +

 
 
 

∫
Now the cost of holding inventory for the period (0, T) is given by

21 1
H. QT H DT

2 2
=              ( Q Q = DT )

Therefore, the average total variable cost per unit time C (T) is given by

( )
21 D HD D

C T A T D
T 2 2 2

π µ π
= + + + − π µ

   
     

                                        (2)

The optimal solution is obtained by differentiating C (T) with respect to T and equating
it to zero. Then, the optimal cycle time T* is obtained and expressed as

T* =
( )

22A D

H D

+ π µ

π+
                                                                                                (3)

The optimal economic order quantity Q* is obtained by putting the value of T* in eq.
(1),

Q* =
( )

( )
2D 2A D

H

+ π µ

π+
                                                                                        (4)
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 From the above expressions (3) and (4), it is clear that if there is no
perishability (i.e. 0π= ) then these two expressions become same as that of  the non-
perishable lot size model and if deterioration of the product starts at the beginning of
the period (i.e. 0µ= ) then (3) and (4) coincide with the expressions of the Fujiwara
and Perera [1].

Case II:  When exponential penalty cost function is used

 An exponential penalty cost function P(t) = ( )( )te 1β −µ −α , t ≥ µ which also

gives the cost of keeping one unit of product in stock until age t, where  µ be that time
period at which deterioration of product start and α and β are constants.
The cost due to the deterioration of the product delivered during the period (t, t + dt) is

given by ( )( )te 1β −µ −α D dt.

The penalty cost due to the deterioration of the product delivered during the time
interval (µ ,T) is given by

( )( ) ( )( ) ( )
T

1
TDtD dt 1 Te e

µ

 
 −
  

β −µαβ −µα = − −β −µ
β∫

Therefore, total variable cost per unit time is given by

( ) ( )D T 1 T
T

A 1
C(T) HDT

T 2
e α β −µ − −β −µ  β   

= + +

By using second order approximation of the exponential term
( )Teβ −µ

in ( )C T
we get,

( ) 21 1
D T D

2 2T
A 1

C T HDT D
T 2

α β + α µ= + + β − α µβ

The optimal solution is obtained by differentiating C(T) with respect to T and equating
it to zero. Then, the optimal cycle time T* is obtained and expressed as

T* =
( )

22A D

D H

+ α βµ

+ αβ
                                                                                           (5)

The optimal economic order quantity Q* is obtained by putting the value of T* in eq.
(1),

Q* =
( )

( )

22A DD

H

+ α βµ

+ αβ
                                                                                    (6)

 From the expression (5) and (6), it is clear that if µ = 0 and αβ=π  then
these two expressions are same as (3) and (4).
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4.  EOQ Model With Finite Production Rate

4.1 Formulation and Solution
 In this model the assumption of infinite production rate is relaxed. The rate of
production P units per period is finite. The behavior of an inventory system in one cycle
may be depicted as in figure (2).

Inventory level

             0          µ 1t t   t+dt              T Time

      Fig.(2)

 From the Fig.(2), it is clear that initially the stock is zero and the production
starts with a finite rate P(> D) units per unit time while the demand is D unit per unit
time. Thus, the inventory increases with a rate (P − D) units per unit time. Let the
production continue for a period 1t .

∴  Inventory level at the and of the time 1t  is q = (P − D) 1t

Let P>D is the number of items produced per unit time. If ‘Q’ be the number of items
produced per production run then production will continue for a time

Q
t1 P

=

The time of one complete cycle
Q

T
D

=

After time 1t , production is completed. Then the inventory level at the moment when
the production is completed is,

( ) Q
P D

P
DQ 1
P

q −

 = − 
 

=

Let us assume that the products do not deteriorate at the beginning of the production
cycle. But deteriorate after sometime of the production period. Let the perishability
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occurs after time t = µ from the beginning of the cycle. The total variable cost per cycle
time consists of the set up cost, inventory holding cost and perishability cost.
The holding cost per cycle is given by

21 1 D
Hq T H T D 1

2 2 P
= −

 
 
 

The total number of units delivered in time (t− µ), are ( )D t − µ  and their production

time is
( )D t

P

− µ
 , where  µ < t ≤  T.

Therefore, the age of the product delivered at time‘t’ is given

( ) ( ) ( )D t D
t t 1

P P

− µ
− µ − = − µ −

   
     

Since the total number of units to be delivered during a period (t, t + dt) is D dt. If linear
penalty cost function is used, then the cost due to deterioration of products delivered

during the period ( )t, t dt+  is given by

( ) Dt 1 D dt
P

 π − µ − 
 

Thus, the total cost due to the deterioration of products during one cycle is given by

( )
T 2 2D D TD t 1 dt D 1 T

P P 2
µ

 + µ   π − µ − = π − − µ         ∫
Therefore, the average total variable cost per period is given by

( )
2A 1 D D TC T HTD 1 D 1

T 2 P P 2 2T

 µ   = + − + π − + −µ         
The optimal solutions is obtained by differentiating C(T) and equate it to zero. Thus,
the optimal cycle time T* and economic order quantity Q* are obtained and expressed

( )

2

*

D2A D 1
PT

DD 1 H
P

 + π − µ 
 =

 − + π  

                                                                                      (7)

( )

* *

2

*

Q T D

DD 2A D 1
PQ
DH 1
P

=

  + π − µ    =
 + π − 
 

                                                                           (8)

 If P = ∞ (i.e. production rate is infinite), then (7) and (8) coincide with the (3)
and (4). Also if an exponential penalty cost function is used by using second order
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approximation of the exponential term exp ( ) D
T 1

P
β −µ −

  
    

 and  by

taking αβ=π , the same equations (7) and (8) are obtained.

5.  Numerical Illustration
 To illustrate the theoretical development, the following example has been
considered.
P = 50 units per day,    D = 25 units per day,    H = Rs.0.01 per day
A = Rs. 100 per day,    µ  = 5 days, α  = 10, β = 0.98

In case of EOQ model for infinite production rate

Case 1. when linear penalty cost function is used then,
                  Optimum cycle time    T* =  5.24  days
and        Optimum order quantity  Q* =  131.00 units

Case 2. when exponential penalty cost function is used then,
              Optimum cycle time    T* =  5.08  days
and        Optimum order quantity  Q* =  126.96 units

In case of EOQ model for finite production rate
When linear penalty cost function is used then,
                Optimum cycle time    T* =  5.48 days
and      Optimum order quantity  Q* =  136.93 units

6.  Sensitivity Analysis
 The sensitivity analysis is performed for checking the effectiveness of the
EOQ model for infinite production rate with respect to the parameter µ  on optimum
cycle time ‘T*’and optimum order quantity ‘Q*’. Similar analysis can also be done for
finite production rate model. Table 1.and Table 2. depict the values of the optimum
policies for different values of the parameter µ in case of linear and exponential penalty
cost. Percentage changes of these values are shown with respect to the parameter µ  = 5
in the data set taken for illustration.

µ Change(%) in µ T* Q*

0 -100% 1.59  (-69%) 39.84  (-69%)

1 -80% 1.88  (-64%) 47.01  (-64%)

3 -40% 3.39  (-35%) 84.82  (-35%)

5 0% 5.24  (0%) 131.00 (0%)

7 40% 7.17  (37%) 179.20 (37%)

9 80% 9.13  (74%) 228.14 (74%)

Table 1: Effect of parameter µ  on optimal policies in case of linear penalty cost



EOQ Model for Time-Deteriorating … 75

µ Change(%) in µ T* Q*
0 -100% 0.90  (-82%) 22.58  (-82%)
1 -80% 1.34  (-74%) 33.68  (-74%)
3 -40% 3.13  (-38%) 78.29  (-38%)
5 0% 5.08  (0%) 126.96 (0%)
7 40% 7.05  (39%) 176.36 (39%)
9 80% 9.04  (78%) 226.02 (78%)

Table 2.: Effect of parameter µ  on optimal policies in case of exponential penalty
cost

 The Table 1. shows the effect of parameter µ on optimum policies in case of
linear penalty cost. If the value of the parameter µ is increased by 80%, the value of
optimum cycle time increases by 74% and the optimum order quantity also increases by
74%. Further, if the parameter µ  is decreased by 100%, the value of optimum cycle
time decreases by 69% and the optimum order quantity also decreases by 69%.

 When we examine for optimum policies in case of exponential penalty cost,
we find that if the value of the parameter µ is increased by 80%, both the value of
optimum cycle time and the optimum order quantity increases by 78%. Further, if the
parameter µ  is decreased by 100%, both the value of optimum cycle time and the
optimum order quantity decreases by 82%.

 Thus, we conclude that the values of the optimum cycle time and the optimum
order quantity are not much sensitive to the change in the value of the parameter µ .

7.  Conclusion
 In this paper we have developed an EOQ model for time deteriorating items
i.e. for those perishable products which do not deteriorate for some period of time and
after that time they continuously deteriorate with time for both infinite and finite
production rate. The penalty cost has also been incurred in the development of the
model. A measure for the utility deterioration as a linear and an exponential penalty
cost function are introduced into the model (as used by Fujiwara and Perera [1] ). The
sensitivity analysis has also been performed for finite production rate EOQ model to
check the effectiveness of the proposed model.
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