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Abstract

This paper has been designed with an aim to study a reliability model for 2-out-of-3
redundant system in which unit becomes degraded after repair. There is a single server who
plays the dual role of inspection and repair. The system is considered in up-state if any of two
original and/or degraded units are operative. Server inspects the degraded unit at itsfailure to see
the feashility of repair. If repair of the degraded unit is not feasible, it is replaced by new one.
The original (called new) unit gets priority in operation over the degraded unit. The distributions
of failure time of the units follow negative exponential while that of inspection and repair times
are taken as arbitrary with different probability density functions. Various reliability and
economic measures are obtained by using semi-Markov process and regenerative point
technique. Graphs are drawn to depict the behavior of MTSF, availability and profit of the model
for aparticular case.
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1. Introduction

Stochastic models of redundant systems have widely been studied by the
researchers including Srinivasan and Gopalan [1973], Murari and Goyal [1984], Singh
[1989], Nakagawa [1989] and Dhillon [1992] under the assumptions that

() Unit works as new after repair
(i) Thereisno need to give priority in operation to one unit over the cther.
(iii) Therepair of the unit isalways feasible.

However, in practice these assumptions are not always true. Since the working
capacity and efficiency of arepaired unit after complete failure depend more or less on
the standard of the repair mechanism exercised. In case of being repaired by an
ordinary server, the chances of its failure may be higher and thus such a unit is declared
as degraded. Mokaddis et a. [1997] have proposed a reliability model for standby
system subject to degradation. Also, some times it becomes necessary to give priority in
operation to one unit over the other in order to increasereliability and availability of the
system. Chander [2005] has analyzed reliability models with priority subject to arrival
time of the server. Further, there are cases in which repair of the degraded unit is
neither possible nor economical to the system due to its excessive use as well as high
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cost of maintenance. Under such situations the degraded failed unit may be replaced by
new one after getting the necessary inspection.

In view of the practica applicaions of three-unit redundant systems, a
reliability model for 2-out-of-3 redundant system of identical units is proposed by
considering the concepts of inspection, priority and degradation of the unit after repair.
Initialy, two unitswork in parallel and one unit kept as cold standby. Thereisasingle
server who visits the system immediately whenever needed. The unit becomes degraded
after repair. Server inspects only the degraded unit at its failure to see the feasibility of
repair. If repair of the degraded unit is not feasible, it is replaced by new unit, that is,
the original unit. The original unit gets priority in operation over the degraded unit. The
system is considered in up-state if any of two origina and/or degraded units are
operative. The unit when not working can not fail. The switch devices are perfect. The
fallure and repair times of units are assumed to be mutually independent and
uncorrelated random variables. The distributions of failure time of the units are taken as
negative exponential while that of inspection and repair times are arbitrary with
different probability density functions. By making use of simple probabilistic approach
and regenerative point technique some reliability characteristics of interest such as
mean sojourn times, mean time to system failure (MTSF), steady state avail ability, busy
period and expected number of visits are obtained. The profit function isa so derived to
carry out the cost-benefit analysis. The numerica results for MTSF, availability and
profit of the model are evaluated for a particular case. Graphs are plotted to highlight
the results.

2. Notations

E Set of regenerative states

No/No Original unit in normal mode and operativel not
working

Do/ Do Degraded unit is operativel not working

NCs/DCs Original/degraded unit in cold sandby

p/q Probability that repair of degraded unit is
feasible/not feasible

[/, Constant failurerate of original /degraded unit

g(t)/G(t), gu(t)/Ga(t) p.d.f./c.d.f of repair time for original /degraded unit

h(t)/H(t) p.d.f./c.d.f of inspection time

NFy/NFus/NFw, Original unit is failed and under repair/under
continuously from previous state/waiting for repair.

DF,/DFy=/DFw; Degraded unit is failed and under repair/under repair

DFyi/DFw; /DRy IDFw

a;(1),Qy(t)

Continuously from previous state/waiting for repair.
Degraded unit is failed and is under inspection
/waiting for inspecti on/under inspection
continuously from the previous state/waiting for
inspection continuously from previous state.

p.d.f and c.d.f of first passage time from regenerative
to a regenerdtive state j or to a failed state j withot
visiting any other regenerative state in (0,t].
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0ij k() Qij(t) p.d.f and c.d.f of first passage time from regenerative
state i to a regenerative state j or to a faled state
visiting state k oncein (O,t].

Oijkr (1), Qe (1) p.df and cd.f of first passage time from regenera
statei to aregenerative statej or to afailed state visit
state k, r oncein (0,t].

M;(t) Probability that the system up initially in state § e E
is up a time t without visiting to any other
regenerative sate

W(t) Probability that the server is busy in the state S up
to time t without making any transition to any other
regenerative state or returning to the same via one or
more non-regenerative states

®/6 Symbols  for  Stieltjes  convolution/Laplace
convolution

~[* Symbols for Laplace Stietjes transform (LST)/
Laplace transform (LT)

Symbol for derivative of the function

A time point (called regenerative point) at which the
system history prior toit, isirrelevant to the system
conditions.

The following are the possible transition states of the system model

S =(No, No,NCs), S1 = (No, No NFyy), S = (No » NFwr , NFR)
S;=(No, No DCs) , S, = (No, Do NFy), S =(NFy, Do s NFur)
S = (No, Do, DCs), S; = (Do, Do NFyy) Ss = (No, Do DF),

S =(Do ,DFu, NFw),  Sio=(NFwr Do , DFup), Su = (No, Do, DFyy),

Si2= (No » DFwi .DFu),  Si3=(No, No DFy), S14 = (No » DFwi,DFur)

Sis =( NFwr, Do ,DFur),  Sis=(No, No DFy), S17=(No » NFwr, DFuR)
Sis5=(No » NFwr, DFu),  Si9=(No , NFwr, DFu) S0 = (No » DFwi ,DFw)
S21=(No .DFwi, NFur),  $2= (Do , DFwi, DFu) S3=(Do , DFwi,DFu)
S;4 = (Do, Do, DCs), Sx= (Do, Do DF) S = (Do, Do DFy)
S7=(Do ,DFwi,NFur) S5=(Do ,DFwi,DFuR) ()

The states &)l S_Ll SS! S4| & S7| SB! S_Lll S_|.3, S_I.Gl 824, 8251 826 are r@maatlve
states while S, Ss, So, Si0 S12, Sia, Sis Si7, Sis, S19, S0, 21, Sp2, Sps, S7, Sps @re non-
regenerative states.

Thus E:{ S)l Sll SEH S4l SB, S7l S?n Slll Sl3, 8161 824, 8251 SZG}
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The possible transition between states along with transition rates for the model is shown
in figure 1.

ah(t)

'No, DFy)
NFur

Sis

& , NFyy]
RG] DFy

I'No, DFy;

S

N

Do, Doj

Do, NFy]
NFyr

a®)

Do, Do | o gl(t)

DCs TV

2,

S

Do, DFy;

DFur

A~

Do, Do
DFy,

au(t)

2,

So7

Do, DF;

NFur

at)

NF S

ah(t) s

Do, DFw,
DFyr

S /gl(o

Do, Do
DFy;

ph(t)

»{ Do, DF,

DFy

S

DFyr

au(t)

ah(t)

ot

ph(t)

2,

DFy

Sz

DFur

au(t)

Fig. 1. State Transition Diagram

> Transition point

Q : Up-State

3. Transition Probabilitiesand Mean Sojourn Times

Simple probabilistic consideration yield the following expressions for the non-
zero elements p; = Q; (¥) = og; (t) dt as

Po1 = P34= [P24,25,

: Degraded-State

: Failed-State

pr2= 1- g% (2l )= Praz,

ps= (2 ), Pae= g* (I +1 1),
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Pazi= 11 [1-g*(1 + )] - pasas, Paz5 = I [1- g*(I +l 1)] = pss.
I+, I+l
Pes = I, , Ps7 = I Pr27=1- 9" (2l 1)= Pras.2r,
| +1 1 |+ 1
Pr2a=g* (2 1), Ps=qh*(I+l 1),  peua=ph*(l +l o),
Pso = ! [1- h*(l + 1)] Ps12 = lil [1- h* (1 + 1)],
[+, [+,
Pss9 = q [1- h*(1 +l 9], Ps1312= 9, [1- h* (1 + 1)],
|+, I+l
Pg8.12,20 = Ply [1-h*(1+l 0)], Peroso= P [1-h*(l +l 1)] :
|+, | +1,
Pi16= P h*(2 ), Piso=q h*(2), Piz1s= 1-h*(21)
Pu11s= 0[1-h*(2)], P1a1810= P[1- h*(2 )] Psz=9,*(2 ),
Po17=1-9,*(2) = Prsar Pue= 0 (I + 1),
P1114= ly [1- gl* (I +1 )] = prrga P2s.26 = P* (21 1),
[ +1,
pus=_ | [1- 91*(| + )] = Pra7s, P2s6 = gh* (21 1),
[+,
Pas.22 = 1-h* (2l 1), Pasg2z=O[1-h* (2 1)],  Paszszz2z= P[1-*(2l )],
P26,24 = gl* (2 4), P26.28 =1- gl* (21 1)= pos2528 2

For these transition probabilities, it can be verified that
Po1 = P3a=Poa2s= P12 + P13 = Pra2 + P13 = Pas + Pas + Pa21 = Paz + Pag21 + Pazs = Per

* Pes = Pr2a + Pr27 = Pr2a + Pr2527 = Ps3 + Ps a1t Ps a2t Pso = Psz + Ps 11t Peast Psr.oi0

+ Pss12.20" Ps1312= Prret Prrist Pr114= Paret Prrzast Pragia= Piziet Pasot Pisis

= Pz 16t Pazot Piz1ast Pisaisio = Piest Pis17= Piest Pis4a17= Pos 26t Poset Pos 22

= s 26+ Poset P25,25.22,23F Pos 822 = Pos2at Pos2s = Pos2at Pososzs =1 ©))

The unconditional mean time taken by the system to transit from any
regeneretive state § when time is counted from epoch at entrance into state S is stated
as:

0

m; = jtinj (t) = - o;* €0) and the mean sojourn times min states § are given by
0

m= SP(T > t)dt @)

0
where T denotes the timeto system failure
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We have
m= 1-m, m= 1 [1-g*(2)], m= 1 [1-g*(I+l )]
2 2 I+,
m= 1 m= 1 [1-g*2 )], mo=_ 1 [1-he(l+ ),
I +1, 2, [ +1,
mi= 1 [Tg*(+H )], ma= 1 [-h*@)],  me= 1 [1-g*@)],
|+, 2 2
M= 1 ms=_1 [1-h*(2l )], M= 1 [1- gr*(2 1) ®)
2, 2, 2,
and
Moy = My My + Miz=m My + Mygp = My (say)
Mz = My Mgs + My + My210 =M Myg + Mygor + My75 = n,
(say)
Mgg+ Mgz = N} M7 24+ My 7= 1My M7 24F My 2527 = nt,

Mgz + Mg 11+ Mgt Mg, =N} ,

Mg3 + Mgg 1220 + Mga gt Mg 11+ Mg7910+ Mg 1312 = g (say)

Ma1,6 + Mug14F My 15= My M6 + Mg g1at Mi1715= rfjfll(sa}’)

Ma316 ¥ Mzt Miz18= Mg, Ma316 ¥ Migot Mz 118t Mz 1810~ rrJf13(531y)
Mye,17+ Migz= Me | Mig417F Mig 3= fTJfle(SaY),

Ma24.25 = Mha, Mas 26+ Mps 61 M52 = Ms

Mas 261 Mps gt Mos g 2o+ Mps 252223 = TTszs(SW) (6)

4. Reliability and Mean Timeto System Failure (M TSF)
Let fi(t) be the cdf of the first passage time from regenerative state i to afailed
state. Regarding the failed state as absorbing state. we have the following recursive

relations for fi(t) :
fo® = Qu® Ofa(t) , F1(0) = Qua() S F 5(0)+Quz(t)
fa(t) = Qaa(t) (1), fa(t) = Qus(t) S f 6(t)+ (Qus(t)+Qa 21(t))
fo(t) = Qea(t) S o(t) + Qer(t) S (1), f2(t) = Qr.24(t) O 24(t) + Qr1(t)
Fa(t) = Qaa(®) S F (1) + Quaa() S 1a(V) + (Quo()+ Qeralt))
f13(t) = Quua(t) O o(t) + (Quu1a(t)+ Quras(t))
f24(t) = Qaa.25(t) S 5(t),
Fas(t) = Qas26(t) S f 26(t) + Qas6(t) S F o(t)+ Qas 22(t)
F26(t) = Qao.24(8) ' 24(t) + Qao 2a(1) (7)

Taking LST of relations (7), solving for F o(s) and usng this, we have
R(9=(- Fo@)/s (®)
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Thereliability R(t) can be obtained by taking Laplace inverse transform of (8).

The mean time to system failure (MTSF)n is given by
. N
MTSF(T2)=Lim@- Fo()/s=5* ©)

11

where

N11 = [(1- P25 26 P26,24)( 1- Pas Pes Psa- Pes Ps11 Pi16)- Pe7 Pr,24 Pasg] [M + M + pra(my+ my)]
+ Pua Pas(1- P25 26 Pos24) (M + PerM+ PesMy+ Pes Ps11)

And D11= (1- Pas.26 Pos24)( 1- Pas Pes Pss- Pes Pe11 Prae)- Pe7 Proa Pose

5. Avalilability Analysis

Let Ai(t) be the probability that the system isin up state at instant t given that
the system entered regenerative state i at t=0. The recursive relations for A(t) are

given by:

Ao(t) = Mo(t) + qu(t)OAL(t)

Aq(t) = My(t) + a3 () OAs(t) + Guaz () OAL(L)

As(t) = M(t) + das () OAL(H)

At) = My(t) + Que(t) OA6(t) + Cuzs ()OAZ(t)+ Cug.21 () OAg(H)

As(t) = Me(t) + ges(t) OAs(t) + de7(t) OA(t)

As(t) = M7(t) + a7.24(t) OA24(t) + Ot7 25.27(t) OAs(1)

Ag(t) = Mg(t) + Ges(t) OAs(t) + Ggs.12,20(t) OAs(t) + Ug.ao(t) OA4() +0g7.,10( OA(H)
+ 0g 11(t) OAL1(t) + s 1312(t) OAL5(t)

Ap(t) = Myg() + dua6()OA6(t) + Gur14(Y) OAg(t) + Ol1r 7.15(t) OA(t)

A(t) = Ms(t) + 0u3,0(t) OAG(t) + Gz 16(t)OA16(t) + Chz 118(t)OAL(E)

+013418.10() OA(t)

Ass(t) = Mi(t) + 0163t OAS(t) + Gsa17(t) OAL(D)

A24(t) = Mg(t) + Olas 25() OAs(t)

As(t)=M 5(t)+ s 26(t) OA26(t) + s 25.22.25(t) OA5(t) + Cos 5 2() OAe(t)

+ G5 6(t) OAG(t)
Age(t) = Mas(t) + 0los 2a(t) OA(t) + 0o 25 28(t) OA (1) (10
where
Mo(t)=€ 2 = Ma(t) MiH=G(t) e Ma(t) =€ ' B
Me(t) = € 0+t M) = €2 g Me)y=€ Y H
Mu® =€ "Gty M) =e? R Mus(t) = €' G,(1)
Mo = €2 Ms(®)= €7 H) Mal)= €776, (1)

Now taking L.T of relations (10) and solving for Ag*(S).
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The steady-state availability of the system is given by
—1i * — N 2 12
Ag(¥) =Lim s A" (9 =" (12

12
where

N12= (P2s,6 Pes+P25,8.22)[ (MP13 0+(P13 07 P13 1.18) (M+P13ME) ) Pg 1312 M(Pest Pea.otPe 13.12)
+My+ Pg.11Ma+ Pe13.12(Ma+ Prs 16Me)] +My [P2s6(1- Pssaz,20- P11 Pris— Psa1 Pi1g.14)
+ Pg.11 P11 Pasg22 + (Pss + Peagt Psaa12)( Pas Pasg22 - Pose Pas21)]
+ (1- Pes.12.20 — Ps.11 P16~ Ps.11 Prasra— Psa1 Prvs Pes-(Ps3 + Paas
+ Pg.13.12) (Pas Pest Pas.21))[ (P2s8.22 ps,13.12+rr3f4(p83+ps4.9+ Ps,13.12)
+ P26.24) + Pas 26Mst Ms]

D12 = (D256 Pes + P2sg22)[( M Przo + (Pa3o + Pr3118)( nty + P13N%)) Pg 1312

+”Jf4(p83+p84.9+ Ps13.12) + g+ ps,lln'}ll"' p8,13.12(”'}13+ p13,1en'}16)]

+ M[P2s6 (1- Pes1220 — Ps11 P16~ Ps11 P11.8.14) + Paa1 Pris Prs g2
+ (Pes *+ Paagt Ps,13.12)( Pas P25,8.22- Pass Pas21)] + (1-Pss.12.20 — Pea1 Prs
—Ps 11 P11,8.14— Ps11 P11,6 Pes~(Pe3 + Peaot Pe13.12)(Pas Pes + Pas.21))
[(P2sg.22 + P2se) my + M4(Psg22 + Pset Posos+ Pos2a) + p25,26n'}26 + mlzs]

6. Busy Period Analysisfor Server
Let Bj(t) be the probability that the server is busy a an ingant t given that the

system entered regenerative state i at t = 0. The following are the recursive relations
for Bi(t):

Bo(t) = 0oa(t)OBa(t) Bu(t) = Wa(t)+ 0ha (1) OB 5(t) + 0lua2() OBa(t)

Bs(t) = Gaa(t) OB4(t)

Ba(t) = Wa(t) + Gs() OBe(t) + Guz5 () OB(t) + Cas 21 (t) OBs(t)

Ba(t) = Ges(t)OBs(t) + Ger(t)OB(t)

B(t) = Wi(t) + 0f7,24() OB2a(t) + 0725 27(t) O Bas(t)

Bs(t) = Wi(t) + Gas(t)OBs(t) + Gss 12.20(t) OBs(t) + Gg.a.o(t)OBa(t) + Ge7.010() OBr(t)

+ 0, 12() OB11(t) + G5,13.12(t) OB 3(t)
B11(t) = Was(t) + Gur6(t)OB(t) + 1 514(t)OBs(t) + 0u1,715(t)OB(t)
Bus(t) = Wis(t) + Guso()OBo(t) + Gz 16()OB1s(t) + Glu1.18() OB(t)

+ (h3.4.1810(t) OB4(t)
Bus(t) = Wig(t) + Guss()OB3(t) + Chsa17(t)OBa(t), Bau(t) = Gpazs(t)OBos(t)
Bas(t)=Was(t) +Chos 26(t) O Bag(t)+0l25,25.22 23(1) O Bas(t) +0ias .22(t) OBg(t)

+0os 5(t) OB (1)
Bas(t) = Wag(t) + 0 24(1) OBoa(t) + 06 25.28(t) OBos(t) (13)

where
Wiy(t) = [e?'+(2 €?'0D)] G,
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Wy(t) =€ g +{(1 e O] g +(1 € O 5
Wo(t)=[e ? 1+(2l 1 ? O] 5,
Wat)=e 5y +(1 16 MO Hy +(1 1€ MR Oph(t) O],
+(1 €M 0 H +(1 e M Oph(t)OD)] & (1)
Wy(t) =€ g iy +[(1 16 ' O1)] g, +(1 €11 OT) g )
Wis(t)=e ? 'H(y +(2 €?'OD]Hey +2 € ey Oph(OL)] o)
Wis(t) =€ 2'G,(t) +[(2 €?'O1)] g,a)
Was(t)=e 2 1'H(ry +[(2 1€ 2 10D H(yy +(2 167 1Oph(®O1)] & ()
Was(t)=e 2 1'g, (1) +[(2 16 1'O1)] ,(1) (14)

Taking L.T. of relations (13) and solving for By*(s) and using this, we can obtain the
fraction of time for which the repairman is busy in steady state

—1 + ey — Nig 15
BO—I;JDrp S Bo(s)—D—12 (15)
Niz= (pzs,*e Pss + pzs,s,zz)[Wl*(O) (p13,9 + P13 116) ps,1§.12+ w, (0){ (pss + Peas+ Pe1312)
+ Ws (0)+ ps,llnjfn"' Ps.13.12(Was (0)+ P13 16Wie (0))]+ (1- Pss.az20 — Ps 1 Piss
— Ps.11 P11,8.14— Ps.a1 P116 Pes -(Ps3 * Poagt ps,lg.lz)(pms Pes + Pag.21))
[(P2sg.22% P2ss) W7 (0) + Pas 26 Was (0)+ Was (0)]
and D,, isaready mentioned.

7. Expected Number of Visits

Let N;(t) be the expected number of visits by the server in (0,t] given that the system
entered the regenerative state i at t=0. We have the following recursive relations for
Ni(t):

No(t) = Qoa(t) & [1+ Ny()] , N1(t) = Qua(t) & Na(t) +Qua2(t) S Na(t)

Na() = Qaa(t) S [1 +Na(0)]

Na(t) = Que(t) S Ne(t) + Quz.5 (t) S No()+Quz 21 (1) S Ne(t)

Na() = Qer(t) S [1+N7()]+ Qeat) ® [1+Ne(V)]

N7 (t) = Q7,24(t) O Naa(t) + Q7,25.2(t) O Nis(t)

Na(t) = Qes(t) & Na(t) + Qas12.20(t) & Na(t) + Qg 0(t) & Na(t)+ Qez.0,10(t) & No(t)
+ Q311(t) & Nus(t) + Qg 13.12(t) O Nis(t)

N1(t) = Quze(t) © Ne(t) + Qur814(t) S Ng(t) + Q1. 715() & N (1)

Nis(t) = Quz0(t) & No(t) + Qu316(t) & Nig(t) + Quz118(t) © Na(t) + Quza1819(t) S Na(t)

N1s(t) = Quaa(t) © Na(t) + Qusa17(t) & Naa(t)

Na4(t) = Qza2s(t) & [1+Nzs(0)]
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Nas(t) = Q2526(t) O Nao(t) + Qos.25.22.23(t) S Ns(t) + Qusg.22(t) S Nig(t)
+ Qas,6(t) & Ng(t)
N26(t) = Qa6.24(t) © Naa(t) + Q 26,25 28(t) S Nas(t) (16)

Taking LST of relations (16) and solving for i (s) -

The expected number of visits per unit time can be obtained as

N
Ng= kts Mo©=5%, (17)

12

where
N4 = (P256 Pes + P25,8.22)[( Por P30 + Paa P13(P130 + P13,1.18)) Ps13.12]
+ [ P2ss(1- Pss12.20 — Ps11 P116— Ps11 P11,8.14) + Pa1 Pi1s P2sg22t (Ps3 + Paas
+ Pg.13.12) (Pas Pos,8.22 - P56 Pag21)] + Paazs(1- Pesa2.20— Ps1 Pi16— Ps11 P11s.14

—Ps 11 P116 Pes-(Pss + Paas+ Pe13.12)(Pas Pes + Pas21))
and Dy isadready specified.

8. Cost- Benefit Analysis

Profit incurred to the system moded in steady state is given by
Pl = K]_Ao - KzBo - K3 No
where
K1 = Revenue per unit up time of the system
K, = Cost per unit time for which server is busy
Kz = Cost per visit by the server
and Ao, By, Ny are already mentioned

9. Particular Case
Letustake g(t)=qe® g,(t)=ae® and h(t) =qe ™'
By using the non-zero elements p;;, we get the following results:
MTSF (T1) = Nyt/Diy Availability (Ag) = Niz/Di,
Busy Period (Bg) = N13/Ds2 , Expected no. of visits (Ng) = N14/D1
where

D1 = [[(au+2 1)(@+2] 1)- paaa][(| + 1+aq)(| + 1+a)(| + 1 +a)(| + 1)-paaa(l + 1+0)
-qql 10l + 1+a)](q+2l 1)-0al qu(@+21 )(I + +a)(l + 1+qo)(| + 1+0)]
M(au+2 ) (@+21 1) (1 +H o+ + +a) (| +H +a)(1 +H 1)(9+2 1)]

N1 = [Daa][(q+2 )(I + 1 +g)+ g](qu+2l 1)(@+2] )(I + 1 +q0)(| + 1)(q+2 1)
+[(au+2! D(@+21 )-padi[(a+2l (I + )+ (1 +H )+ 1(g+21 5)
(Q+pa)]/[1 (a+20 )4 +H 1+a)(qut2l 1)(@+21 1) (| +H 1) (g+2l )(1 + 1+gy)]

D1o=[a.Cll 1[cha(q+2! )+21 (q+21 )(cn+2! )+aP(qu+2! )] +21 (q+21 )(cu+2 )(1 + 1+a)]
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9.2 .(g+21 )(gu+2 )(I + 1 +a)]]+H[(/( + )[D.oul + 1+a)(l + +a)(l + 1+0)
+p.adu2l ol + 1 +a)+q2l o(l +1 i+op)(I + 1+a)-qaul o1 +1 +ap)(l + 1 +a)]
M(au+2 ) (1 +H ) (1 +H +a)(| + +g)]]+C[(aet21 )1+ +ar)a+poy’]

+ a1 1[(2 +ar)a+pay]/[ady(cu+2 )[(| + +an)]+F[20agyl 1(0u+2l )(a+2l 1)
+qachq(ch+2! 1)(a+2l )+pei’a’qr2c,’l 1pg(a+2l J+2aql 1(qi+2l 1)(@+2l 1)]
Il 2aqaul 1(q:+2l 1)(@+2l 1)]
N1=[qClal 1[qs(a+2! )(I +I 1+a:)+2l (qu+2! )(I + 1+au)(| + 1+a)+q(gu+2! )(I + 1+0)]
+21 (g2 )(au+2l )(I + +an)]/[2.(a+21 ) (a2 ) H e +H 1+a)]]
(/I +H DDAl H 1+qr)(I + +a)(| + +g)+p.adu2 1(1 + 1+0)+qg2l 1
(I + o+ H 1+a)-qaul 11+ 1+qr)(1 + 1 +a)]
M(@u+2l o) (1 +H a1+ +a)( + i +g)]]+Cl(aut 2 )(1 +H 1+a)(@+2l )+pou(cut2l )
(@+21)+ql 4[(I + 1+a)(@+2l )+pau(l + 1+a)]]
(1 + #a)(l + 1+a0)(qi+2l )(a+2l )]
+H[q.2l 1(out2l 1)(@+2] 1)+a.(q+2l 1)(@+2l 1)(q+2l 1)+pcha(a+2l )+21 1(q +21 1)
(@+21 1)+ pas2l 1 (q+21 )]/ [2] (g +21 1)(a+2] 1)(qu+2] 1)]
N1=Clofl 1a(qu+2] )(au+2! D)+ga(ar+2! (a2l (1 + r+or)+weag(au+2) )
@+21 ) (I + 1+ +al 19(cu+2] 1)(Wisa(ga+21 )+pa)+pdad(gi+2l 1)
(@u+20 )]+F(qu+21 )1+ +ar)(ga(aut2] 1)+poad+wasga(dat2] 1))]
Maq(@u+21 )(@u+21 1)(1 + 1+a)]
N1a= Cofl a[ca(q+21 )+ q(au+21 /[ (| + +0)(an+2! )(q+2 )] +[Da(l + 1+au)(l +l 1+a)
(I +1 +g)+p.agu 2l (I +1 1+0)+qq2l 1(1 + 1+q)(l + 1+a)
-qqul o(1 + +aa)(1 + +a)]+F
we=[a @+qy) )(I + rra+a)+ a,® (I +1 )pl/[ agu(@a+gy) )(I + r+a+ay)]
wis=[a (a+cn)(arta+2! )+ ai’21 pl/[ cu(a+a,)(qu+2! +a) a]
Wos=[ (r+a+2| 1) a (a+qy)+20,°| 1 pl/[(qrta+2| au(a+qy) a]

C=dl 1[qu+2(I + )]/(qu+2l 1)(| +I 1)

D=[(I +l 1+a)(l +l 1+a)-pl 1(I +1 1+a)-pas(a-l DI/ + 1+a)(l + 1+a)]

F=[(1 +1 i+qa) (I + +a) (1 +H o +g)(1 +H )-plo(I +H 1+a) (| +H 1+a)(1 + 1)-paaal 1(1 + 1+0)

-paa(l 1 +a)(l + i+ (| H )-[al o1+ 1+qo)(1 +H g+a)+(+ +ga) (1 +H +a)l o1 H 1)]]
(0 + +a)(E+H +a)( +H +a) (1 + )]
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10. Graphical Study

The mean time to system failure (MTSF) and availability of the system model
decrease more rapidly with the increase of falure rates | and | ; for fixed values of
other parameters as shown in figure 2 and 3. However, their values increase as repair
rate (a) of the degraded unit increases. The behavior of profit of the system mode with
respect to failurerate| is shown in figure 4 thisfigure indicate that profit of the system
goes on decreasing with the increase of falure rates | and | ;. But system becomes

more profitable when repair rate by increasing therepair rate a and revenue per unit up
timeincrease.

MTSF vs Failure Rate (1)
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Brafit Ws Failure Rate [4)
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11. Application of the Study

The application of the present sudy can be visualized in various
practical situations. For example, consider a communication amplifier in which
redundancy is used as means of increasing the rdiability. Redundant systems first
appeared in communication systems with the introduction of Klystron amplifier.
Generating high power microwave energy places tremendous electrical stress on the
amplification device. Microwave Klystron and traveling waves tubes operate at extra
ordinary high cathode temperatures. These high operating temperatures result in
relatively low mean time between failures and thus a corresponding high failure rate.
The high voltage power supplies required to operate traveling wave tubes aso have a
history of high constant failure rates. In recent years solid state power amplifiers have
made significant improvement in mean time between failure but still typically fall short
of meeting the reliability expectations of satellite communication links. Satellite
transponder time is extremely expensive and operators cannot afford to have a satellite
link off the air for any period of time, no matter how short in duration. In many
instances satellite equipment is installed in remote locations which are not easily
accessed for maintenance. Therefore, it is imperative that any amplifier system used in
satellite communication be equipped with some form of automatic backup or
redundancy. The goal of any redundant amplifier system is to achieve a system
reliability that is greater than the réliability of an individua amplifier. Hence, a
stochastic model for 2-out-of-3 modular amplifier system isunder taken for study.
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