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Abstract

Power function distribution provides a better fit for failure data and more appropriate
information about reliability and hazard rates and used as a subjective description of a population
for which there is limited sample data and in case where the relationship between variables is
known but data is scare. In this paper, Bayesian approximation techniques like normal
approximation, Lindley’s Approximation, Laplace Approximation are used to study the behavior
of shape parameter of generalized power function distribution under different priors.
Furthermore, a comparison of these approximation techniques, under different priors is studied
by making use of simulation technique.

Key Words: Bayesian Estimation, Prior Distribution, Normal Approximation,
Lindley’s Approximation, Laplace Approximation.

1. Introduction

Bayesian approach is used by practitioners for situations where scientists have
prior information about the values of the parameters to be estimated. The available
information is formalized into a prior distribution on the parameter, and estimators are
formed from the posterior distribution of the parameter given the data. Balakrishnan
and Chan (1994) discussed the BLUE estimate for scale parameter and location
parameter from Log-gamma distribution. Saran and Pandey (2004) put forward the
concept of record values which are found in many situations of daily life as well as in
many statistical applications.

Chang (2007) presented characterizations of the power function distribution by
independence of record values. Estimations of normal distribution parameters using
likelihood functionhave been presented by Balakrishnan and Mi (2003). Pandey and
Rao (2008) applied Bayesian estimation to carry out the study of shape parameter of a
generalized power function distribution under asymmetric loss function. Rahman et al.
(2012) used different symmetric and asymmetric loss functions to obtain Bayes
estimators for power function distribution along with comparison. Kifayat et al. (2012)
discussed Bayesian analysis of the power model using two informative priors and two
non-informative priors along with the comparison of informative and non-informative
priors.Bayesian estimate for shape parameter from generalized power function
distribution was obtained by Almutairi et al. (2012) considering non-informative prior
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distribution and informative prior distribution. Sultan et al. (2014) studied Bayesian
analysis of the power distribution under double priors and single priors and a
comparison of these priors on the basis of posterior variances has also been discussed.

The probability density function of generalized power distribution is given by
0

f(x)=—5 (x=p)""; U<x<u+o; o>0,u20;0>0 (1.1)
o
where @ is the shape parameter, g is the location parameter and o is the scale
parameter.
The likelihood function of (1.1) is given by
9" (@—l)i In (x; =)
L =—Gwe ™ (12)

2. Approximation Methods of Posterior Modes

Asymptotic normality of the posterior is the basic tool of large sample
Bayesian inference. Gelman et al. (1995) gave a number of counter examples to
illustrate limitations of the large sample approximation to the posterior distribution. The
Bayesian approach to parametric inference is conceptually simple and probabilistically
elegant. The numerical implementation of a Bayesian procedure is not always straight
forward since the involved posterior distribution is in terms of complicate functions.
One of the important steps in simplifying the computations is to investigate the large
sample behavior of the posterior distribution and its characteristics. This is important
for two reasons: (a) asymptotic results provide useful first order approximations when
actual samples are relatively large, and (b) objective Bayesian methods typically
depend on the asymptotic properties of the assumed model.

In our present study, we focus on three Bayesian approximation techniques i.e.
normal approximation, Lindley’s approximation, Laplace approximation.

2.1 Normal Approximation

The basic result of the large sample Bayesian inference is that the posterior
distribution of the parameter approaches a normal distribution. Some good sources on
the topic from the Bayesian point of view include Lindley (1958), Pratt (1965) and
Berger and Wolpert (1984). An example of the use of the normal approximation with
small samples is provided by Rubin and Schenker (1987), who approximated the
posterior distribution of the logit of the binomial parameter in real application and
evaluate the frequentists operating characteristics of their procedure. A review is
provided by Freedman, Spiegel halter and Parmer (1994) and Khan et al (1996). Ahmad
et al. (2007, 2011) discussed Bayesian analysis of exponential distribution and gamma
distribution using normal and Laplace approximations.

If the posterior distributionP(@ | y) is unimodal and roughly symmetric, it is

convenient to approximate it by a normal distribution centered at the mode; that is
logarithm of the posterior is approximated by a quadratic function, yielding the
approximation
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P(9|y)~N(é,[l(é)]_l)
B o’ logP(c9 | y)

where [ (é) = p . If the mode, 6 is in the interior parameter space, then

1 (49) is positive; if @is a vector parameter, then [ ((9) is a matrix.

In our study, the normal approximations of generalized power function under
three different priorsis obtained.

2m
1
Under extension of Jeffrey’s prior g(&) o« (5) , the posterior distribution for & is as

n=2m (5_1)2 In (x; =)
i=1
PO x) D e
from which the posterior mode is obtained as

n—-2m n—-2m

0= = SN
nlna—znlln(x[—,u) n(lno—In(x-u)
i=l

n—2m

I:n (Ino-In(x- ,u))]z

Thus, the posterior distribution can be approximated as

and [I(é)]_l -

n—=2m n—=2m

P@|x)~N — T
n(lno—1In (x— 1)) [n(lna—ln(x—ﬂ))]

- | 2.1.1)
Under gamma prior g(@) e ; a,b>0;0>0 , where ab are the hyper
parameters. The posterior distribution for @ is as
n+b-1 (0-1)2 In (x; = p)—ad
PO | x) °C—O_n(y_1> e

and the posterior distribution can be approximated as

n+b—1 ) n+b-1
n(lno-—ln(x—,u))+a’[n(lna—ln(x—,u))+a]

P@|x)~N (2.1.2)

2

Under the Erlang prior g(@)ce™‘6™" ; a,b>0;0>0 , where c,d are the hyper
parameters,the posterior distribution can be approximated as

n+c-—1 ) n+c-1

P@|x)~N
[011+n(1n0'—1n(x—,u))]

(2.1.3)

’ 2

|:cll+n(ln0—ln(x—,u))

2.2 Lindley’s Approximation
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Quite few times, the integrals appearing in Bayesian estimation can’t be
reduced to closed form. Hence the evaluation of the posterior expectation for obtaining
the Bayes estimators will be tedious. Thus, we propose the use of Lindley’s
approximation method (1980) for obtaining Bayes estimates. Lindley developed an
asymptotic approximation to the ratio

[r(©) " ag
Q

J‘ OO g

Q

where 8 =(6,,....,0,), L(0) is the logarithmic of likelihood function, #(8) and U ()

I= (2.2.1)

are arbitrary functions of & and Q represents the space range of 6 . Thus
I=E{h(0)]x} canbe evaluated as

~ ) l 2 NI ON | 52 l ) ) ~2\2
12h@)+ [ @) +20O)U'0) |6+ LOhO) |6 (2.2.2)
In particular, if 2(0)=80;h'(0)=1;h"(0)=0
Thus E(9|x)=é+i(U(é))¢2+ L7 (#*) (2.23)
06 27 -
where §* = (=L,(0))™; U(0) = In g(6)
Thus, for generalized power function distribution Lindley’s approximation for

shape parameter 6 under extension of Jeffrey’s prior, gamma prior and Erlang prior can
be obtained as

Using (1.2) é:ﬁ
L2<é>=%=-0%=-nana-mv
7 =[O - n(lna—m)z
Q(é):%:%:bﬂlno——mf

2m
1
Under the extension of Jeffrey’s prior g(é) oc (5] ,

U@) =Ing(@)=—2mn0;U' (@) = ‘2’" =2m(Ino—In(x-u))

If h(0)=0;h'(O)=1;h"(0)=0
Thus Lindley’s approximation for & from (2.2.3) is as

E@]x) =[ no2m+l ] (2.2.4)
n(lno—In(x—wu))

Under gamma prior (&) oc e “?6"" ; a,b>0;0 >0 where ab are the hyper
parameters
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(n+b)(noc-In(x—u))-a

E@|x)= 2.2.5)

n(lno—In(x—w))’
Under Erlang prior g(6) oc e ??0°™" ; a,b>0;6 >0 , where c,d are the hyper

parameters.

((c+n)(ln0—ln(x—y))—;)

E@|x)= (2.2.6)

n(lno—=In(x—u))

2.3 Laplace Approximation

In the development of new simulation techniques, Laplace’s method uses
asymptotic arguments. From (2.2.2) it may be observed that Lindley’s approximation
requires evaluation of third order partial derivatives of likelihood function which may
be cumbersome to compute when the parameter € is a vector valued parameter. Tierney

and Kadane (1986) gave Laplace method to evaluate E(4(60)|x)as
¢ expi-nh" (6)}

P exp{-nh"(6)}
where —nh" (6) =In P(0| x); —nh" (0" )=1n P(0|x)+In h(6);
ATl s ne o A*
§ ==[-nh"@)] 167 ==[-nn" (6]
Thus, for generalized power function distribution Laplace approximation for shape
parameter € can be calculated as

E(h(0)|x) = 2.3.1)

-1

2m
. 1 e .
Under extension of Jeffrey’s prior g(8) o (5] , the posterior distribution for @ using

(1.2)is as
n=2m Y tnx—a0)
=1

P@|x)oc———e
( | ) O_n((i—l)

—nh(6)=(n=2m)n0-n(@-1)lno+63 In(x, - 1)

n—2m

-nh'(0) =

—nln6+i In(x, — p)
i=1

n—2m

~ 0=

n(lno—In(x- w))
i =12 Do inGey0)

n—2m

[n(no~in(i— y))]2

Therefore ¢° = —I:—n h" (é):l_1 =

B (n_zm)l/2
B n(lno—1In(x— )

Or @
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now-nh (0)=n-2m+1)Iné —6’*(n1na—zn: In(x, —u))+nhho
i=l

e n—2m+1

B n(lno—1In(x - w))
(n—2m+1)

1/2

andp = —
n(lno—In(x - u))

Thus using(2.3.1)we have

n=2m+1/2
E@|x)= n-lm+l (”‘MHJ e (2.32)
n(lno—-In(x—u)) n—2m

Under Gamma prior g(8) «ce™8"™ ; a,b>0;6>0

n+b n+b n+b=1/2
E6|x)= LA ( ] ¢! (2.3.3)
a+n(lno—In(x—w) J\n+b-1

Under Erlang prior g(8) ce™?0™ ; a,b>0;0>0

n+c=1/2
E@|x)= nre ( nte J e (2.3.4)
1/d+n(lno—In(x—p)) J\n+c-1

3. Simulation Study

For simulation study, a samples of size n=25, 50 and 100 to represent small,
medium and large data set has been generated by using EasyFit 5.5 software. The
posterior mode for the shape parameter of Generalized Power function distribution is
obtained by using different Bayesian approximation techniques under three types of
priors. A simulation study was conducted using R-software to examine and compare the
performance of the estimates for different sample sizes by using three different types of
priors. The results so obtained are presented in Tables 1, 2, 3 given below:
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Hyper

n 0 o | parameters 0
a=b=c=d v
Jeffrey’s
I::;rlr G;:?OTa Erlang prior

0.0 1.0 1.6961 1.4069 2.7072
20 15 (0.9662) (0.0406) (0.7972)

05 15 0.8057 0.8967 1.2923
20 (0.9867) (0.0796) (0.9923)
0.0 1.0 2.3548 1.4108 5.0689
25 20 (0.8558) (0.0983) (0.6688)

05 15 1.1170 1.0799 2.4127
(0.8170) (0.0799) (0.4127)

0.0 1.0 2.5116 1.3183 6.8056
30 25 (0.7116) (0.0383) (0.8146)

05 15 0.9796 1.0172 2.6919
) ) (0.7296) (0.0183) (0.6919)

0.0 10 2.0259 1.7511 2.4797
20 15 (0.6258) (0.0351) (0.6788)

05 15 1.1762 1.1612 1.4422
(0.8763) (0.0761) (0.9422)

0.0 1.0 2.8553 1.8744 4.0923
50 25 20 (0.8254) (0.0744) (0.6024)
0.5 15 1.0904 1.0778 1.5657
(0.7095) (0.0744) (0.4048)

0.0 1.0 2.7956 1.6748 4.5922
30 25 (0.7065) (0.0248) (0.5929)

05 15 1.3885 1.2235 2.2831
) ) (0.6886) (0.0153) (0.5832)

0.0 1.0 1.8499 1.7308 2.0537
20 15 (0.4488) (0.0309) (0.5637)

05 15 1.0479 1.0529 1.1642
) ) (0.6478) (0.0629) (0.8753)

0.0 1.0 1.8499 1.6307 2.2442
100 25 20 (0.6887) (0.0506) (0.5535)
05 15 1.2639 1.2201 1.5338
) ) (0.5648) (0.0302) (0.4027)

0.0 10 3.4177 2.1986 4.4937
) ) (0.4288) (0.0196) (0.4948)

30 05 15 25 1.3729 1.2724 1.8063
’ ’ (0.0429) (0.0105) (0.4074)

O,4= posteriormean under normal approximation

Table 1: Posterior Mean and Posterior Standard Deviation (Within Brackets) for
Shape Parameter of Generalized Power Function under Various Priors using

Normal Approximation Technique
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Hyper n
n 0 H o parameters (9L A
a=b=c=d
Jeffrey’s
I::;rlr Gamma prior Erlang prior
0.0 1.0 1.7904 1.0510 2.8092
20 s (0.8895) (0.0521) (0.8812)
05 15 0.8505 0.9421 1.3388
20 (0.8614) (0.0422) (0.4498)
0.0 10 1.9895 0.4048 3.5350
25 20 (0.9986) (0.0502) (0.6541)
05 15 1.1791 0.9418 2.4784
: : (0.7682) (0.0959) (0.5773)
0.0 1.0 1.5332 0.1276 4.0304
30 : : )5 (0.5223) (0.0725) (0.3304)
0.5 15 1.0457 0.9343 2.7499
) ) (0.6574) (0.0643) (0.5334)
0.0 1.0 2.0681 1.6417 2.5235
20 : : s (0.6556) (0.0426) (0.7355)
' 05 15 ' 1.2007 1.1701 1.4673
: : (0.8109) (0.0413) (0.2774)
0.0 10 2.9148 0.6254 4.1551
50 25 ) ) 20 (0.8259) (0.0539) (0.4662)
05 15 1.1132 1.0741 1.5889
(0.7244) (0.0765) (0.3997)
0.0 1.0 2.1427 1.0028 2.6533
20 : : )5 (0.4438) (0.0139) (0.2645)
' 0.5 15 ' 1.4174 1.0589 2.3128
) ) (0.5185) (0.0576) (0.4218)
0.0 10 1.8688 1.7201 2.0729
20 s (0.5599) (0.0312) (0.6537)
05 15 0.9804 0.9913 1.0884
: : (0.7713) (0.0055) (0.1995)
0.0 10 5.6741 0.3077 6.8613
100 | 25 ) ) 20 (0.6652) (0.3166) (0.3534)
0.5 15 1.2768 1.2150 1.5468
: : (0.5677) (0.0143) (0.2579)
0.0 1.0 3.4526 0.8849 4.5297
20 : : )s (0.4005) (0.0537) (0.2281)
' 0.5 15 ' 1.3869 1.2324 1.8205
) ) (0.3708) (0.0143) (0.2216)

01 4 = posteriormean under Lindley’s approximation

Table 2: Posterior Mean and MSE (Within Brackets) for Shape Parameter of
Generalized Power Function under Various Prior using Lindley’s Approximation
Technique
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Hyper n
n 0 H o | parameters Orp4
a=b=c=d
Jeffrey’_s prior Gamma .
m=1 . Erlang prior

prior
00 1.0 6.6206 0.4757 1.8184
- s (1.5317) (0.0686) (0.7882)
05 15 1.9339 1.1557 2.4024
: : (0.5228) (0.0658) (0.6125)
20 00 | 10 3.4349 0.0890 2.0432
s Lo : - (1.2438) (0.0078) (0.8543)
’ 05 15 ' 1.5265 0.3252 1.9938
: : (0.4002) (0.0244) (0.7749)
0.0 1.0 3.0193 0.0272 2.8590
30 )s (1.0982) (0.0021) (0.7581)
05 15 1.9407 0.1407 1.5352
: : (0.8516) (0.0019) (0.7441)
00 1.0 1.1942 0.8020 2.0541
- s (0.4951) (0.0612) (0.6652)
05 15 1.7427 2.0462 2.5204
: : (0.3536) (0.0435) (0.5876)
0.0 1.0 2.0122 0.0918 2.6741
s | 25 : - (0.3156) (0.0013) (0.7489)
’ 05 15 ' 4.2201 0.8341 2.5479
: : (1.3202) (0.0232) (0.6547)
0.0 1.0 2.2716 0.0298 3.7113
20 |— : )5 (0.0625) (0.0025) (0.6211)
’ 05 15 ’ 2.5423 0.2176 2.3613
: : (0.5243) (0.0167) (0.4521)
00 1.0 1.2929 1.0879 3.7835
20 s (0.4987) (0.0468) (1.5831)
05 15 2.0108 1.9238 3.5462
: : (0.4182) (0.0247) (1.4421)
0.0 1.0 1.6945 0.2916 3.8565
w0 | 2 - (0.3986) (0.0525) (1.4121)
05 15 2.1971 1.3712 3.3460
: : (0.5679) (0.0131) (1.3225)
0.0 1.0 4.4758 0.0165 3.5629
20 |— : )5 (1.2561) (0.0011) (1.2210)
’ 05 15 ’ 2.5282 0.4354 3.1239
: : (0.1982) (0.0104) (1.0224)

01 4= posteriormean under Laplace approximation

Table3: Posterior Mean and Posterior Standard Deviation of Shape Parameter for
Generalized Power Function under Various Priors using Laplace Approximation
Technique
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4. Conclusion

When comparison of the non-informative prior distribution is made with the
informative prior distribution, the difference is apparent in the form of use of Gamma
distribution as prior. Gamma distribution benefits the informative prior distribution,
while Jeffrey’s prior was found to be suitable in the non-informative case. Bayesian
estimates and posterior standard deviation and mean square error in case of Lindley’s
approximation for shape parameter were obtained and we observe that the gamma prior
proves to be efficient with minimum posterior standard deviation and MSE. The
contribution of sample size, shape parameter and location parameter is examined

through the results showing variation in the value of Owith the change in the hyper
parameters. It is evident from the Tables 1, 2 and 3 that Bayesian estimates under
normal approximation are efficient because of less posterior standard deviation under
gamma prior distribution.
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